skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Jianzhong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 24, 2026
  2. Free, publicly-accessible full text available May 15, 2026
  3. The hydrogenation of CO2to CH3OH over Cu-based catalysts holds significant potential for advancing carbon sequestration and sustainable chemical processes. 
    more » « less
    Free, publicly-accessible full text available April 30, 2026
  4. Free, publicly-accessible full text available January 29, 2026
  5. Abstract Liquid water under nanoscale confinement has attracted intensive attention due to its pivotal role in understanding various phenomena across many scientific fields. MXenes serve an ideal paradigm for investigating the dynamic behaviors of nanoconfined water in a hydrophilic environment. Combining deep neural networks and an active learning scheme, here we elucidate the proton‐driven dynamics of water molecules confined between V2CTxsheets using molecular dynamics simulation. Firstly, we have found that the Eigen and Zundel cations can inhibit water‐induced oxidation by adjusting the orientation of water molecules, thus proposing a general antioxidant strategy. Besides, we also identified a hexagonal ice phase with abnormal bonding rules at room temperature, rather than only at ultralow temperatures as other studies reported, and further captured the proton‐induced water phase transition. This highlighted the importance of protons in the maintaining stable crystal phase and phase transition of water. Furthermore, we discussed the conversions of different water structures and water diffusivity with changing proton concentrations in detail. The results provide useful guidance in practical applications of MXenes including developing antioxidant strategies, identifying novel 2D water phases and optimizing energy storage and conversion. 
    more » « less
    Free, publicly-accessible full text available December 16, 2025
  6. Free, publicly-accessible full text available December 1, 2025